Biomarkers of Brain Function Identified That May Lead to Clinical Tests for Hidden Hearing Loss

Image
HHTM
January 28, 2020

BOSTON, MASSACHUSSETTS A pair of biomarkers of brain function — one that represents “listening effort,” and another that measures ability to process rapid changes in frequencies — may help to explain why a person with normal hearing may struggle to follow conversations in noisy environments, according to a new study led by Massachusetts Eye and Ear researchers. Published online last week in the scientific journal eLife, the study could inform the design of next-generation clinical testing for hidden hearing loss, a condition that cannot currently be measured using standard hearing exams.

dan polley“Between the increased use of personal listening devices or the simple fact that the world is a much noisier place than it used to be, patients are reporting as early as middle age that they are struggling to follow conversations in the workplace and in social settings, where other people are also speaking in the background.”

Daniel B. Polley, PhD, Senior study author

“Current clinical testing can’t pick up what’s going wrong with this very common problem,” said Polley, the Director of the Lauer Tinnitus Research Center at Mass. Eye and Ear and Associate Professor of Otolaryngology Head-Neck Surgery at Harvard Medical School..

Aravindakshan Parthasarathy“Our study was driven by a desire to develop new types of tests. Our work shows that measuring cognitive effort in addition to the initial stages of neural processing in the brain may explain how patients are able to separate one speaker from a crowd.”

Aravindakshan Parthasarathy, PhD, lead study author

Hearing loss affects an estimated 48 million Americans and can be caused by noise, aging and other factors. Hearing loss typically arises from damage to the sensory cells of the inner ear (the cochlea), which convert sounds into electrical signals, and/or the auditory nerve fibers that transmit those signals to the brain. It is traditionally diagnosed by elevation in the faintest sound level required to hear a brief tone, as revealed on an audiogram, the gold standard test of hearing sensitivity.

Hidden hearing loss, on the other hand, refers to listening difficulties that go undetected by conventional audiograms and are thought to arise from abnormal connectivity and communication of nerve cells in the brain and ear, not in the sensory cells that initially convert sound waves into electrochemical signals. Conventional hearing tests were not designed to detect these neural changes that interfere with our ability to process sounds at louder, more conversational levels.

In the eLife report, the study authors first reviewed more than 100,000 patient records over a 16-year period, finding that approximately 1 in 10 of these patients who visited the audiology clinic at Mass. Eye and Ear presented with complaints of hearing difficulty, yet auditory testing revealed that they had normal audiograms.

 

Developing Objective Biomarkers for Hidden Hearing Loss

 

Motivated to develop objective biomarkers that might explain these “hidden” hearing complaints, the study authors developed two sets of tests. The first measured electrical EEG signals from the surface of the ear canal to capture how well the earliest stages of sound processing in the brain were encoding subtle but rapid fluctuations in sound waves. The second test used specialized glasses to measure changes in pupil diameter as subjects focused their attention on one speaker while others babbled in the background.

Previous research shows changes in pupil size can reflect the amount of cognitive effort expended on a task.

They then recruited 23 young or middle-aged subjects with clinically normal hearing to undergo the tests. As expected, their ability to follow a conversation with others talking in the background varied widely despite having a clean bill of hearing health. By combining their measures of ear canal EEG with changes in pupil diameter, they could identify which subjects struggled to follow speech in noise and which subjects could ace the test. The authors are encouraged by these results, considering that conventional audiograms could not account for any of these performance differences.

“Speech is one of the most complex sounds that we need to make sense of. If our ability to converse in social settings is part of our hearing health, then the tests that are used have to go beyond the very first stages of hearing and more directly measure auditory processing in the brain.”

–Daniel B. Polley, PhD,

 

In addition to Drs. Polley and Parthasarathy, co-authors on the eLife report include Kenneth E. Hancock of Mass. Eye and Ear/Harvard Medical School, Kara Bennett of Bennett Statistical Consulting, Inc., and Victor DeGruttola of the Harvard T. H. Chan School of Public Health. The study was supported by the National Institutes of Health (NIDCD P50-DC015857).

 

About Massachusetts Eye and Ear

Massachusetts Eye and Ear, founded in 1824, is an international center for treatment and research and a teaching hospital of Harvard Medical School. A member of Partners HealthCare, Mass. Eye and Ear specializes in ophthalmology (eye care) and otolaryngology–head and neck surgery (ear, nose and throat care). Mass. Eye and Ear clinicians provide care ranging from the routine to the very complex. Also home to the world’s largest community of hearing and vision researchers, Mass. Eye and Ear scientists are driven by a mission to discover the basic biology underlying conditions affecting the eyes, ears, nose, throat, head and neck and to develop new treatments and cures. In the 2019–2020 “Best Hospitals Survey,” U.S. News & World Report ranked Mass. Eye and Ear #4 in the nation for eye care and #2 for ear, nose and throat care.

 

Source: Mass Eye & Ear; image courtesy health.mil

  1. Biomarkers for detection of mental stress that ultimately lead to neural atrophy are a good idea, by predicting new pathways and help in the reorganization of neural plastics to divert auditory potentials in the auditory cortices, if possibles, therefore allowing the hearing loss to slow a little in the future life of the patient..
    Hidden hearing loss that occurs in the first tier synapses within the cochlea is a firm and proven discovery and credit goes to Kujawa and Liberman for that. The progressive nature of cochlea damage makes a lot of sense with this finding., but note that use of amplification following this finding only worsens the hearing loss which then is detected within the 8th nerve array as myelin damage!

Leave a Reply